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NUMERICAL IMPLEMENTATION OF THREE-DIMENSIONAL FRICT-
IONAL CONTACT BY A LINEAR COMPLEMENTARITY PROBLEM

Byung Man Kwak*

(Received September 6, 1989)

The complementarity principle recently derived for a general three dimensional frictional contact is explicitly implemented as
a linear complementarity problem (LCP). The inherent nonlinearity in the three dimensional friction condition has been treated by
introducing a polyhedral law instead of elliptic law. The two-dimensional formulation previously derived is shown to be a special

case of this three-dimensional formaulation in LCP.
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1. INTRODUCTION

Contact problems have long been a topic of intensive study
since the Hertzian theory developed in 1881, mostly through
analytical approach (Johnson, 1985) before 1970’s and later
through computational studies. (Conry and Seireg, 1971, Chan
and Tuba, 1971, Francavilla and Zienkiewicz, 1975, Chand,
Haug and Rim, 1976, Tsuta and Yamaji, 1973, Herrmann,
1978, Pian and Kubomura, 1981, Rahman et al., 1984, Bathe
and Chaudhary, 1985, Mehlhorn et al, 1985, Chandrasekaran
et al., 1987 and so on),

In solid mechanics, contact problem is one of the most
difficult topics, being highly nonlinear : The geometric non-
linearity comes from the unknown kinematic boundary condi-
tion, that is, the unknown contact area, while the material
nonlinearity from the frictional property.

For the contact without friction, general theories are avail-
able and well applicabe for efficient numerical treatments
(Haug and Kwak, 1987, Park and Kwak, 1986, Lee and Kwak,
1984, Joo and Kwak, 1986, Lee and Kwak, 1989). The main
theory is that an equivalent optimization exists ; the minim-
ization of the potential energy under some kinematic con-
straints (Panagiotopoulos, 1985),

In the friction case, the nonlinearity also involves irrevers-
ible and dissipative nature and hence it is loading-path depen-
dent as is well known (Klarbring, 1986, Kwak and Lee, 1988,
Martins and Oden, 1983). Therefore, few theories have been
available for this difficult but important frictional contact
problems. Even the very few theories appearing in the litera-
ture have still significant restrictions, or can deal with only a
limited scope of problems.

The variational inequality formulation (Duvaut and Lions,
1976), for example, is limited to the case where either the
normal contact force is assumed known or the contact area
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constant. The subsequent formulations by other authors
(Oden and Pires, 1983, Kalker, 1988, Klarbring, 1988) have
similar restictions.

Recently the author (Kwak, 1989) has obtained a com-
plementarity principle which is directly derived from.contact
compatibility and friction conditions for general three-
dimensional orthortropic friction law of the Coulomb type.
Up to now, no principle has been available in the literature,
for a three-dimensional friction problem. This derivation is
completely new. In a previous paper by the author and Lee
(1988), a formulation confined only to two-dimensional prob-
lems is derived and a detailed implementation by the bound-
ary element method shown. An extension of the same concept
to three dimensional problems has not been obvious at all. As
is shown here, however, the two dimensional formulation is a
special case of the three dimensional formulation with the
polyhedral law of friction.

In this paper, the nonlinear complementarity relation
(Kwak, 1989) is implemented as an LCP by the polyhedral law
of friction substituting original elliptic law. The resulting
formulation is neat and very suitable for efficient numerical
treatment. It is general, because it covers full three-
dimensional contacts with an orthotropic friction law. Also,
there is no difference whether a multi-body contact or a
contact against a rigid body is considered. Another special
feature of the method is the inclusion of rigid-body degree-of-
freedoms, which is not usually considered in the literature
although very important in practice.

Since an incremental approach is inevitable for the path-
dependency of friction effect, usual nonlinearities such as
large deformation and elasto-plasticity can be easily incorpo-
rated. The property of the proposed formulation in terms of
uniqueness for an incremental step will be studied and
presented elsewhere with numerical testings.

2. PROBLEM FORMULATION

For the purpose of reference and continuity, the com-
plementarity principle derived in (Kwak, 1989) is repeated
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briefly. It is described for a large deformation, three-
dimensional contact problem with an orthortropic friction
law of the Coulomb type.

In the incremental approach, the configuration and state up
to time t (or a time-like parameter) are known and those at
time ¢+ 4t are to be sought. The updated Lagrangian
approach is taken for illustration. In this method, all the
static and kinematic state variables are referred to the con-
figuration at time ¢. Following the usual notation in texts, let
the coordinates of a generic point in a body be denoted as ¢;
and x; at time ¢ and ¢+ 4¢, respectively. The displacement
increment during A¢ is then,

Ui=Xi ™ Qi 1

The energy-conjugate strain and stress measure referred to
the configuration at ¢ are the Lagrangian strain tensor ¢,;
and the second Piola-Kirchhoff stress tensor ¢*4S,;. They are
described by,

=€+ i (2)
where,
ei;=(uc;+u;0)/2 and 7= Uritr;/2 (3)

The derivative (), ; means differentiation with respect to
the coordinate ;. The second Piola-Kirchhoff stress tensor
has the following relationship with the Cauchy stress tensor
t+4tq.;, which represent the stress at ¢+ 4¢ referred to the
configuration at ¢+ A4¢.

That is,

”"‘a.—,:I]lx.-,r HLMSrs Xjs 4)

where | /| is the determinant of the Jacobian of the coordinate
transformation. The second Piola-Kirchhoff stress is
decomposed as follows,

t+d'5ij:l<7ij+5ij )

where S,; denotes the second Piola-Kirchhoff stress incre-
ment tensor. It is noted that in the following the quantities
without time specifications by a left superscript denote corre-
sponding increments from ¢ to ¢+ A4¢.

The derivation is described for a two-body contact without
loss of generality. Body 2 is assumed restrained against any

LY

Fig. 1 Two bodies in contact

rigid body displacements, while body 1 is allowed for rigid
body displacement, denoted by g; , suitably defined with
respect to a point or a set of points, such that the displace-
ment field of body 1 can be described by the sum of g; and the
relative displacement with respect to the reference point or
set(Chand, Haug and Rim, 1976, and Haug and Kwak, 1978).
This situation is completely general and is shown in Fig 1. An
extension to a multi-body contact requires only some addi-
tional book-keeping.

For the purpose of description, let the region occupied by
the bodies be Q! and Q2 and their boundaries by I"! and "2,
respectively. Each boundary is composed of thress disjoint
parts ; I, where displacement is prescribed, I, where trac-
tion conditions are given and I, which is the so-called poten-
tial contact region taken to be sufficiently large to cover the
real contact area after deformation.

The normal contact stress and tangential contact stress are
denoted by S, and S.. For body %, k=1 or 2;

tSnk:tO'.‘jk ‘n.-" 'n,-k (6)
tSlik:tU;'jk tnjlt_tsnk ty 7

where » and ¢ denote the unit normal and tangential vector,
respectively. Let P denote contact pressure taken to be
positive by tradition. Then,

tP=—tSyi=—15,? ®

The relations to be satisfied in an incremental step may
now be described as follows.

(1) Global Equilibrium

For body 1, where a rigid body motion is allowed, all the
external forces and the contact forces should be in equilib-
rium. For configuration at ¢+ A¢, from the principle of
virtual displacements (Haug and Kwak, 1978),

t+4at t+dt
[ R8s vrar+ [ Siatdr=o ©)
t+4¢r] t+ atrd

where the coefficient matrices @,; and j;; represent the rigid
body displacements of points of **4[ and ‘"4, in the
direction of F; and S; due to a unit displacement in the j-th
rigid body degree-of-freedom, respectively. The notation F;
and S; denote traction vectors corresponding to the external
and contact force, respectively. If there is a body force field
f:, an integral over the domain with a kinematic matrixd
similar to 3;; or a.; can be added. For notational simplicity,
however, it will be suppressed throughout the paper.

(2) Internal Equilibrium of Each Body

The local equilibrium equations are expressed in terms of
the second Piola-Kirchhoff stress tensor at configuration ¢
+ At as follows (Joo and Kwak, 1986),

(** S kxi4),;=0 in Q* (10)
(3) Strain-Displacement Relationship This is already

given by Egs. (2, 3)
(4) Stress-Strain Relationship for an Incremental Step

Sij = CijrsErs (11)

where Ci;rs is the constitutive coefficients at current time ¢.
(5) Boundary Conditions for Each Body
Displacement conditions are
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wi=U; on I} (12)

where U, is the given displacement increment. The traction
boundary conditions are

t+dto.ij t+dlnj = t+dF" on 1"} (13)

(6) Compatibility Condition
No material particle will penetrate into the surface of the
opposing body. Let the opposing surfaces in the potential

contact region at configuration ¢ be denoted by smooth
functions,

g (@) =0 and g*(a?) =0 (14)

Then the impenetration condition says that all the particles

a:? should be outside body 1 at configuration ¢+ 4¢. This can
be expressed as ; for any point a}, (Fig. 2)

gl (@i + uia?) — ai(a)) 20 (15)
for all g% satisfying g%(a.?) =0 on I'Z, where

aa) = wuila:') +aiq; (16)
By defining,

Dn(a)=min g'(a?+ u?(a?) — @ilai) aan)
where the value D.(a!), to be called as a gap function,
essentially denotes the distance from the pariticle g} to the
surface g2(4? =0 after deformation, the above condition can
be simply expressed as

Da(a}) =0 for all g} such that g'(a}) =0 (18)
The compatibility condition can now be described by

t4pn,(at) =0 for all a,' on I'¢ (19)
This states that if there is nonzero pressure, than the gap
must be zero, and vice versa, It is noted that, instead of
finding 4% exactly, an approximate contacting pair obtained
from the configuration ¢ is often used.

(7) Friction Conditions

Let the principal orthotropic axes on the tangent plane at
a point on [} be denoted locally by T, and T, with the

v before deformation

- —  after deformation

g'(al) =0

N

g'(B -0l )20

2

or g'(zf suf-ih2o

1

g2(a?)- 0

Fig. 2 General impenetration condition

corresponding coefficients of friction, z, and g, The tan-
gential traction components and the relative tangential dis-
placement components along the axes are Sz, and Sy, and
Dre and Dy, respectively. The form of the static friction law
is the following.

t+4et t+de
() () = @

Ha Heo

where ‘+4P is the contact pressure which is nonnegative by
convention.

If strict inequality holds, there is no slip. Otherwise, a
relative motion is imminent. In this latter case, it is known
(Panagiotopoulos, 1985) that there exists a nonnegative A
such that

trae g trag
Dra=—4 3 and Dpp=—A—7F—
Ha He

(21)

The relative displacements are defined from the tangential
components of the vector(z*— ') when body 1 is under focus
For description, it is convenient to introduce local coordinate
systems, such as (T, Ts, »)' and (7., T» #)* in Fig. 3.1t
is noted that axes T} and 7,? are in the same direction while
the others are opposite each other. With respect to these
coordinate systems, all the tangential components are
defined. From action-reaction principle,

Sra=Sta=S%, Sr,=Sh=—Sh, S»=S:=S57
Dr1o=D%e=D%s, Drs=D%=-D% and so on. (22)

Here and in the following, variables without superscripts on
the right are referred to body 1 and its local coordinates.

For a two-dimensional case, the Coulomb law says,
_pt*AtPSl-#AtSTgﬂt#»dtP (23)

When strict inequalities hold for both the equations, there is
no relative motion; Dr=0. Otherwise, slip is possible ;
Dr=—ASr with 120,

It is natural to transform the above statements directly to
a so called complementarity problem form (Cottle et al,
1980). Some complementarity propety of the friction law has
been recognized and utilized in the literature (Kwak and Lee,
1988, Klarbring, 1988), although limited in scope. The formu-
lation proposed here is very general. First introduce a non-
negative real number **#P* and **#g, such that

Fig. 3 Principal orthotropic axes and force and relative dis-
placement components
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t+4dt
STa :t+dtP* cost+d¢0f
Ha

H‘;ST:; — t+AtP# sin”‘“ﬂf (24)
b

Also introduce D and 8, such that

Dr,=Drcosf, and Dr,=Drsinf, (25)
Where D; denotes the magnitude of slip or the relative
displacement between a pair of contacting points. Then the
friction condition (20) can be expressed as

t+AtP*+ T:t+dtP (26)
with the complementarity rule,
T Dr=0, (27)

where 7>0 is a slack variable, and D;>0. For the two-
dimensional case, a similar complementarity condition has
already been developed in Kwak and Lee(1988), but it is not
directly derivable from the above three-dimensional state-
ment. The connection between the two will only be clear after
introduction of the polyhedral law of friction approximating
the orginal friction law, Eq. (20). Another relation is dervied
from Eq. (21) using Eqgs. (24, 25) as follows,

tang@, = /’jb tant+4tg, (28)

3. NONLINEAR COMPLEMENTAR-
ITY SYSTEM

The governing equations derived may be interpreted as
follows. Eqs. (2, 3, 10, 11) with the boundary conditions
(12) and (13) constitute the usual set of governing equations
for deformation mechanics. They essentially provide a rela-
tionship between the contact traction vector and displace-
ment vector on the potential contact region I',. Conceptually,
this relationship can be expressed as follows,

ut=uc("MUSE AFR), k=12 (29)

where the subscript ¢ refers to the potential contact region
I'f and **#S*='S.*+ S.* denotes a traction vector with
both normal and tangential components, **4S,, !*4S;,
and *#Sp, It is noted that an implicit relationship, say,
from the principle of minimum energy is also good for the
following development.

The global equilibrium Eq.(9) can be expressed symboli-
cally,

E(*Sc+S¢; ‘F+F)=0 (30)

Also, if Eq. (29) is substituted into (16) and (17), the gap
function can be expressed as,

Dn(*a)) =G'(*Sc+S., q*, q ;'ah) (31)

where ! and 4% are mating contact points predetermined
from Eq. (17) at configuration t, and the rigid body displace-
ment is expressed as a difference of two nonnegative num-
bers, ¢.=¢q,*—q:”, where g,*and ¢,” are nonnegative. This
will be denoted as,

a=q*—q (32)

where ¢g* >0 and ¢~ =0.
Then the condition in Eq. (19) becomes

(*P+P)D,=0 (33)
and
tP+P=0and D,=0 (34)

To get a consistent formulation, the following manipula-
tion is introduced for Eq. (30). Since an equality relation can
be equivalently stated by two inequalities, Eq. (30) can be
substituted by

E('Sc+Sc;'F+F)+ V=0 (35)
and

E(*Sc+Sc;'F+F)—V*=0 (36)
where V* and V- are slack variables for the two inequal-
ities. Then the following complementarity relations can be
stated,

V*g*=0and V¢ =0 37
where

V*=0, g*=0, V- 20, g~ =0 (38)
This follows since actually V*=V~-=0, It is noted, how-
ever, that by adding Eqgs. (35, 36) V=V *— V- is shown to
have the meaning of a constrained force, which is zero when
q is allowed to take any value.

The friction conditions, Egs .(24, 25, 26) when applied for

the incremental analysis under consideration can be stated as
follows.

(‘P*+P*)+ T='P+P (39)
and

TDr=0, @n
where

tSra:; Sta _ (‘P*+ P*)cos (‘6 +6,) (40a)

——-'5“;; St — (4p*4 P*)sin (6, +6,) (40b)
and

Dre=Drcosf, and Dr,= Drsinfy (25)

Now since Dy, and Dy, are funcitons of z: and #% they can
be expressed in terms of Sz, Sts and S, using Eq(29).

DTa:DTa(STm Squ Sn) (413«)
Drb:Dn(Sra. Srb, Sn) (41 b)

Theoretically it is possible to solve for the free variables,
Sras Sty Dray D1, 85 and 8, in terms of T, P(=—S,)
and Dr from the above 6 equations, when applied for each
point on .. By substituting these solutions into Egs. (28, 31,
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35, 36) a formal complementarity problem is finally obtained
with the complementarity relations (27), (33) and (37). The
unknown variables are identified pairwise as,
(VY a; V", ¢ ;{P, Dn; T, D} (42)
This is, however, recognized as a nonlinear complementar-
ity system, even with linearly elastic material, because of Eqs
(25, 40a,b) For a two dimensional case, a linear com-
plementarity problem has been possible. This shows that the
nature of the three dimensional frictional problem is essen-
tially different from that of a two dimensional one, although
a natural connection exists as will be shown in the following.
It is also observed that it is not amenable to use a direct
linearization method since the amounts ¢, and 4, are not
necessarily small, because a sudden change in the direction
can occur, especially when a slip occurs from a sticking
status.

4. TREATMENT BY LINEAR COM-
PLEMENTARITY PROBLEM FOR
NUMERICAL IMPLEMENTATION

4.1 linearized Geometric Compatibility
The gap function, (17) for a mating contact pair, can be
expanded to obtain the linearized form as follows,

Dn=g"(a®) +(us— ud) g} — awa; 8} (43)
where
a 1
g}: agxh Ianl = -7

It is seen that by dividing Eq.(43) by |g.|, one obtains a
measure of distance. The first term in (43) denotes the initial
gap at configuration ¢. The other two terms represent the
normal components of the relative and rigid body displace-
ment, respectively. A similar formula has also been derived
directly from the mechanics and used extensively in the
literature (Chand, Haug and Rim, 1976, Haug and Kwak,
1978)

4.2 Approximate Frictional Conditions for Numeri-

cal Implementation
It has been indicated that a formal linearization may be

Ce

T,

b / Ce
1

T
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made as a Newton type approach. This, however, turns out to
be complicated and not numerically efficient. Therefore, in
the treatment, the original elliptic cone of acceptable traction
forces defined in Eq. (20) is replaced by an approximate
polyhedral cone. One such replacement appears in (Klarbring,
1988) in an example for an approximate isotropic law.

Let Cr and Cr(e) be the original elliptic cone, Eq. (20) and
the polyhedral cone, respectively, as follows ;

t+ 4t

CE:{(STay S, P): [(—&L)z

t+4tS 212 Ha
H(—2n )] s 0np) (44)
and
ieagr
Cp(e):{(STa, Sr, P) 1 ”aﬂcosm
+051 Gng <, i=1:we} (45)

where ¢; is a directional angle in (Sr.. Sz) plane and e
denotes the number of pairs of opposing faces of the polyhe-
dral cone. It is noted that the term on the left hand side of
inequality sign in (45) denotes the component of tangential
force along the direction @; The cross sectional shapes of the
cones, Ce, Cp(2) and Cp(4) for P=1 are shown in Fig. 4. The
cone Cp(1) with @, =0 corresponds to a one dimensional case.
The cone Cp(2) may be termed as a rectangle law of friction
due to its shape. This may be interpreted as the result of
direct application of the one-dimensional law along each
principal axis as follows;

ItnﬂtSTalSﬂaHdtP

't+dtSTblst+dtP (46)
The other case with arbitrary e is called as a polyhedral law
of friction.

To arrive at a complementarity rule for the polyhedral law,
introduce slack varibles 7, and T;* which are nonnegative
such that

t+4tSTa t+AtSTb . T\{—
T, cosa + sina; +-/7.—= tratp (47a)
a
t+at t+at +
————cﬂsr“ osa;+ Sm sinm—%';—z
a a
—tap  j=1,-e (47b)
CE
T \ Cp@
Hy)
T,

/“
\ :

Rectangular law

Cp2)

Octagonal law G, @

Fig. 4 Polyhedral law of friction as compared to elliptical law
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where

ur =y (et 1) /2 (48)

This term is introduced for later use. Define the relative
displacement Dr* and Dr;~ for the corresponding directions
8., as follows,

DracosBi+DresinBi=De* —Dei™y, i=1-+00- e (49)

where

Dzt 20, D™ =0, (50)

and
tanB:=“%tana: (51)
He

This last relation comes form Eq. (28). If the component of a
tangential force vector, (Sre., Srs), computed along the
direction ¢;, falls on the boundary of the polyhedral cone, a
slip in the opposite direction to the force will occur along 3..
That is, when Dr; >0, 77 must be zero and when 77 >0,
there can not be a slip in the negative direction. This condi-
tion can be stated as

Ti‘thT:Oy i=l- e (52a)
Similarly

T.szi :0, i:1,"‘e (52b)
where

T} =20, D+ =0, T7 20, D7 =20.

Upon substitution into Eq. (47a, b), a set of equations are
obtained. From the resulting equations, solve for Sr,, and Sy,
in terms of P(=—S,) and 7~ and T:*. These solutions are
then substituted into Egs. (30, 43, 49) resulting in the final
linearized complementarity problem, with the primary un-
knowns as follows ;

(VY e, V-, a;
{P, Du; (T, D%;T", Dri;i=1,e)}] (53)

and the complementarity, (33), (37) and (52a, b). It is noted
that when Cy(1), corresponding to a two dimensional case is
used, the formulation described in Kwak and Lee (1988) is
obtained, as a special case of the three dimensional problem.
For numerical implementation, it is convenient to impose
Egs. (47a, b, 49) for two angles with 90°apart at a time. This
corresponds to imposing a rectangular law of friction one
after another.

After an incremental step for 4¢ is processed, the configu-
ration at f+ A¢ is taken as a new reference configuration for
the next increment. Correspondingly, the coordinates and the
state variables must all be updated, such that ;%= g, + u:,
q;"" = q,2+ ¢’ and so on. With the configuration change, the
orthotropy direction for friction must also be updated.

5. NUMERICAL IMPLEMENTA-
TION SCHEME BY LCP USING
POLYHEDRAL LAW OF FRICTION

For the following development, it is considered that the
contacting pair of points mentioned in the previous section
has been approximately obtained already. Corresponding to a
nodal point g}, the opposing potential contact point ¢? will
not fall on a nodal point in general. A suitable interpolation
can always be used to find the values of necessary state
variables in terms of those at neighboring nodes.

As methods of discretization, both FEM and BEM can
equally be used to find the relationship (29). As already noted
earlier, the various displacement components along the nor-
mal and tangential directions on the common potential con-
tact surface can be expressed as follows, referring to Fig.3
and Eqgs. (8, 22)

Un uh+ ui - an Qna an
[ Ua| = [ uat u?z’ = [ - Qan Qaa Qab}
Us us— u} - an Qoa Qus
P Ry
{ Sa| +| Ro| F (54)
Ss Rs

where the minus signs in the third terms come from the
replacement of — P in place of S,. It is noted that the
original interface stiffness corresponding to (S,, S., S,) is
symmetric positive definite for a stable equilibrium. For
notational simplicity in the numerical scheme, the subscript
T used up to now to refer to the tangential direction will be
omitted in the following.

As already noted, it is convenient to impose the polyhedral
cone condition pairwise. Therefore, consider angles @, and .
first. The description for angles @; and ¢, will be exactly the
same. For notational simplicity, let

1a = pa/ p* (sinazcos @ — sinaicosaz)
w3 = po/ 1* (cosazsina: —cosa;sina,) (55)

Then, by letting

Sa LS. _S

zcosa,-i— 1, SIN@= P (56)
from Eq. (47a, b)

S:i'f' T:’—=/1‘P= _

Si—T#=—u*P (57)

where (7 ) denotes values at configuration ¢+ 4¢, Solving
for S, and Sk from these equations,

<§:>:%“[:M§ Mﬁ M;z :%ﬂ"" (58)

where T=[Ty", 7., T, T:"1%, with 7, itself being
the vector of 7)™ for each nodal point, and M}, M2, M} and
M? are diagonal matrices with (z.*sin @1);, (¢a*sin @2);,
(us*cosan); and (u»*cosaz);, respectively. The subscript ;
refers to the nodal numbering on .

Now the gap and slip can be expressed as
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—un—Ang+§
Uat+ Aag
us+Asq

D,
l Da] = (59)
Ds
where § corresponding to the g'(a.?)/|¢'| in Eq.(43) denotes
the gap at current configuration ¢ between the contacting
pair and A= [a;;] is appropriately partitioned as A=[An,
Aa., A,] corresponding to (n, g, b) directions at each

nodal point of I',’, By substituting expression (58) into (54)
and their results into (59),

where C! and S! denote diagonal matrices with (cos#,); and
(sin A1), as their elements
Another set of equations are obtained from Eq. (57);

Tr+Tr = sz:'
T2++ Tz‘zsz (62)

where m is the diagonal matrix with (¢*), as its elements
The global equilibrium Eqgs.(35, 36) take the following form

Sn
D, Qnn .1 N N —N, N, HTF-_{,_(A;' AT Ag)l S:a] =0 (63)
Da = - Qan P+7 "Al Az A1 *Az T Sb
D = Qo -B B, B. —B .
__bAn Qab Q _lQ ’ _ Ql ’ P from which S, and S, can be eliminated using Eq. (58) : Thus,
+ A, 0| — —-’z)an Qa:a Qa: ’ S, Eqgs. (35, 36) become
Ay 0 — Qon Qba Qes Sb _ . 1
~Rn H'F—ATP+5(—Ey, E: Ex —E]T+V =0
+|! Rs | F (60) -
Rb _‘HTF+ATP__[ Fl, Ez L‘l _Ez]T+ V+_0 (64)
where where
Nl:szMaz"{" anMl?v NZZQnaMé+ Qmsﬂlbx E12A2M3+AZMb2
Al:QaaM:‘{" Qabez, AZZQaaMal+ Qabel EzzAgl‘la}‘*’1‘1b‘r1‘4151 (65)
B = QuaMi+ QusME, B.= QbaM(}+beMg . .
From Eq. (49) In summary, one obtains the following linear com-
' plementarity problem from the first equation of (60) and from
Dr—Dn SN\ (D. (61), (62) and (64) :
(BE 93 e
N[/ — _ z2=Mw
:( ° )K—ZL)P w'z=0, w20, 220 (66)
( A A A —A; ) (A >
—B. B: B. —B; A7 where
P
Qan Qaa Qab S Ra :[D D% D+t v, Ts, V* V_]-p
Se| + F| (61) zZ Iny D11y D72y Ty, T, s
( an Qba be) S— (R ) w:[P, Tf, T{, D;l, D?z, q+’ q-]r (67)
an+N12m - M N, 0 0 —An An
_(ClQan“{"Slan)
—[C'A12+S'Bi2.Jm  (C'A,+S'B)) (C'A:+S'B,) I 0 (C'Aa+S'As) —(C'A.+S'A,)
-(CZQM-FSZQ,,,,) .
M= ~[C*A12+S*Bi.)Jm  (C*A:+S*B)) - (C?A,+S?*B;) 0 [ (C?A,+S%A,) —(C'A.+S%Ay) (68)
2m -1 0 0 0 0
2m 0 -1 0 0 0 0
A;H‘Exzm —E\ E, 0 0 0 1]
"‘A;_Elzm El —Ez 0 0 0 0

with Ni;=Ni~N,, Az=A1—Az Bi2=Bi—B,, Ex=E —E,,

and

0
~H'F-H'F
H'F+H'F

_ - anﬁ+ Qnaga_+ angb" _
(ClQan+Slan)Ii_ (ClQaa+Slan) S_'a‘“ (Canb"l" S‘be) §b+ (ClRa+Sle)F
(C*Qant+S?Qon) P—(C?Qaa+S?*Qon) So— (C*Qas+ S*Qus) So+ (C*Rat S*Ry) F

0

R:.F+6

(69)
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When another pair of new angles, say a; and o, are
considered, one obtains the set of equations for Dg;",
Drit, Ts and T, which are the same as the equations
for D%, Dr2.t, T.” and 7T except angles @, and a, replaced
by a; and @, The two-dimensional case is recovered by
setting ;=5 =0, 2.=£.=90" and g, =p,=u. than p,*=1,
#e*=1and p*=p,

Also in this case,

C'=1, S'=0, C*=0, S*=1,
Therefore, the system of LCP is given as

Z2=Mw+f
wTz=0, w>=0, 2=0. (70)

where

Z:[Qn, Dy, Tr, v+, vIT
w=[P, T{, Dr, ¢*, ¢ ]7

Qnnt Qnatt —Qna 0 —A, An
- Qan - Qaa/‘ Qaa I Aa —A.
M= 2ul -1 0 0 0 (71)
Ai+Aw  —AZ 0 0 0
~Ai-Alp AL 0 0 0

- anP+ Qnaga“RnF"i“a
Qanp_ Qaa§a+RaF
—H'F—H'F
H'F+H'F

(72)

This result is exactly the same as already obtained previ-
ously by Kwak and Lee(1988) for the two-dimensional case.

A couple of observations are in order. When p,=u,=0,
than m=0. In this frictionless case, the martix M for both
three-dimensional and two-dimensional case takes the follow-
ing form,

[ 5] @

which corresponds to a strictly convex quadratic program-
ming problem, when @ is a symmetric positive definite
matrix, as is the case for stable equilibrium problems. How-
ever, when m is not zero, it is true that no corresponding
minimization formulation is available and no unique solution
can be expected. This question will be examined further
elsewhere. The same statement holds true for two-
dimensional case as can be seen immediately from Eq. (71),

6. REDUCTION TO SIMPLER
CASES

6.1 Two-Dimensional Frictional Contact
For two dimensional case, the Coulomb law says that |Sy|
< uP. This can be equivalently stated as,

Sr+ T+:/1P
—Sr+ T =uP (74)

where slack varibles are introduced as before. The relative

slip Dr is accordingly expressed as a difference of two
nonnegative values;

Dr=D:*—D7" (75)
where
Dr=Ds(Sr, P;F) (76)

Then the following complementarities hold,
D:*T*=0and D~ T =0, 77)
By eliminating S; from Eq. (74),

T*+ T =2uP (78)

Also, since St=(T*—T7)/2, Sr can be eliminated from
all other expressions such as D, and Dr. Threfore, Eqs.(35,
36, 43, 75, 78) constitute the complementarity problem sought
for with complementarity relations (33), (37) and (77). The
resulting system is linear and found to be the same as sys-
tem(70),

6.2 Reducton to Frictioless Contact

If there is no friction, than the friction condition described
in Section 2 is not necessary and all tangential contact force
is zero. The basic equations are simplified. Eq.(29) now
becomes,

ut=ub("TUSE; U FY), k=1, 2. (79)
From Eqgs. (35, 36)

E(*Sp+Sn;'F+F)~V~=0 (80)
E(S:+Ss'F+F)—V*=0

Using Eq. (79), Eq. (31) becomes

Du(*aly=G'(*!S»+S»n, 4%, ¢ ;‘al, ‘ad) (81)
The complementarity conditions are, with P=—S,,

(*P+P)Dn=0 (82)
and

V*g*=0and Vg =0 (83)

with all variables nonnegative as in (38),

The system (80) to (83) constitute a complementarity prob-
lem sought for. For the particular case of linear elastic, small
displacement, frictionless contact, it is a linear com-
plementarity problem and is equivalent to the well-known
quadratic programming approach derived from the principle
of minimum potential energy under kinematic constraints.
The linear complementarity problem corresponds to neces-
sary conditions of this quadratic programming problem.

7. SUMMARY AND CONCLUSIONS

It has been shown that a three dimensional frictional
contact problem can be described by a complementarity
principle. The fact that it has inherent nonlinearity in the
expression even for the case of linearly elastic materials
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contrasts itself with the linear complementarity problem
formulation possible for two dimensional frictional problem.

The formulation is very general without any specific
restrictions such as the assumptions on normal contact force
or on contact area usually made in the literature. It is appli-
cable to nonliner material and geometric problems with
orthortropic law of friction. A linearization suitable for a
numerical analysis has been possible and implemented as an
explicit LCP form by introduction of .a polyhedral law of
friction approximating the original elliptic law. The com-
plementarity problem previously introduced by the author for
two dimensional contact has been shown to be a special case
of this linearized three dimensional formulation.
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